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SUMMARY

Cortical pyramidal neurons receive thousands of
synaptic inputs arriving at different dendritic loca-
tions with varying degrees of temporal synchrony. It
is not known if different locations along single
cortical dendrites integrate excitatory inputs in
different ways. Here we have used two-photon gluta-
mate uncaging and compartmental modeling to
reveal a gradient of nonlinear synaptic integration in
basal and apical oblique dendrites of cortical pyra-
midal neurons. Excitatory inputs to the proximal
dendrite sum linearly and require precise temporal
coincidence for effective summation, whereas distal
inputs are amplified with high gain and integrated
over broader time windows. This allows distal inputs
to overcome their electrotonic disadvantage, and
become surprisingly more effective than proximal
inputs at influencing action potential output. Thus,
single dendritic branches can already exhibit nonuni-
form synaptic integration, with the computational
strategy shifting from temporal coding to rate coding
along the dendrite.

INTRODUCTION

The location of synaptic inputs on the dendritic tree can have

important functional consequences (Magee, 2000; Spruston,

2008; Williams and Stuart, 2003). Dendritic filtering results in

differences in the size, shape, and summation of EPSPs arriving

at the soma depending on dendritic location, with distal inputs

being disadvantaged compared with proximal inputs (Nevian

et al., 2007; Rall, 1964, 1967; Rall et al., 1967; Stuart and Sprus-

ton, 1998;Williams andStuart, 2002), although in some cell types

the location-dependent properties of synapses and dendrites

help tomitigate these differences, making somatic synaptic inte-

gration relatively independent of dendritic location (Andersen

et al., 1980; Jack et al., 1981; Magee, 1999; Magee and Cook,

2000; Stricker et al., 1996). Furthermore, the local integration

of synaptic inputs also appears to depend on dendritic region.

For example, synaptic inputs to the distal apical dendrites of

layer 5 pyramidal cells (Schiller et al., 1997; Yuste et al., 1994)

or CA1 pyramidal cells (Golding and Spruston, 1998) can trigger
local dendritic spikes, and the gating (Larkum et al., 1999) and

boosting (Stuart and Häusser, 2001) effects of backpropagating

spikes on neighboring synaptic input (Jarsky et al., 2005) can

also be region specific. Finally, plasticity mechanisms also

appear to depend on dendritic location (Gordon et al., 2006;

Letzkus et al., 2006; Sjöström and Häusser, 2006). These

region-specific differences in dendritic properties may also be

reflected in the preferential targeting of different types of inhibi-

tory inputs (Somogyi, 1977; Somogyi et al., 1998) and excitatory

inputs (Markram et al., 1997; Thomson and Bannister, 1998;

Petreanu et al., 2009; Richardson et al., 2009) to specific

dendritic domains.

While these functional differences in macroscopic regions of

the dendritic tree are now well established, it remains unclear

whether the rules for synaptic integration are also heterogeneous

on a smaller scale, and in particular at the level of single dendritic

branches. This is especially important given the recent emphasis

on the role of single dendritic branches as fundamental func-

tional compartments for synaptic integration and plasticity (Lar-

kum and Nevian, 2008; Losonczy and Magee, 2006; Losonczy

et al., 2008; Major et al., 2008; Poirazi et al., 2003; Branco and

Häusser, 2010). Do synaptic inputs along a given dendrite

behave approximately equally in terms of their integrative prop-

erties, or are there systematic functional differences even along

a single dendrite?

To address this question we have taken advantage of the

precise spatial and temporal control of synaptic activation

possible with two-photon glutamate uncaging, and probed the

thin basal and apical oblique branches of layer 2/3 and layer 5

pyramidal cells, which receive the majority of the synaptic input

to these neurons (Larkman, 1991; Lübke and Feldmeyer, 2007).

While strong EPSP attenuation occurs along individual branches

of pyramidal cell basal dendrites (Nevian et al., 2007), it is not

known if inputs at different distances along a branch are inte-

grated similarly. We show that single cortical pyramidal cell

dendrites exhibit a gradient of temporal summation and input

gain that increases from proximal to distal locations. This

suggests a progressive shift of computational strategies for

synaptic inputs along single dendrites.

RESULTS

The Input-Output Function of Single Dendrites
To study synaptic integration along single basal and apical obli-

que dendrites in cortical pyramidal cells, we first determined

their subthreshold input-output function. We made whole-cell
Neuron 69, 885–892, March 10, 2011 ª2011 Elsevier Inc. 885
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Figure 1. The Input-Output Function Varies

with Distance along Single Pyramidal Cell

Dendrites

(A) Left: two-photon image of a layer 2/3 pyramidal

neuron filled with Alexa 594. Rectangular box indi-

cates basal dendrite selected for experiment.

Right: selected dendrite with seven glutamate un-

caging spots (orange circles). (B) Somatic voltage

responses to increasing number of stimulated

synapses (from dendrite and spots shown in A,

activated at 1 ms intervals). Bottom traces show

recorded responses, and top traces, the linear

sum expected from the individual responses to

each spot. The graph on the right shows that the

recorded peak EPSPs are markedly supralinear

and grow as a sigmoid function (dotted line is the

linear sum, orange circles the actual response;

orange line is a fit to the data). (C) Differences in

the input-output function according to the position

along individual dendrites. Lines are sigmoid fits to

the data, and values are shown normalized to the

maximum of the fit. Distal synapses have a higher

gain function, which is also shifted to the right

(summarized in D). (E) EPSP supralinearity also

increases with distance from the soma (values for

activation of three inputs).
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recordings from layer 2/3 pyramidal cells in the somatosensory

and visual cortex to monitor somatic voltage changes, and

activated an increasing number of synapses with two-photon

glutamate uncaging (Gasparini and Magee, 2006; Losonczy

and Magee, 2006; Matsuzaki et al., 2001). We selected seven

spines distributed over a region of �20–30 mm (Figure 1A), and

recorded somatic EPSPs in response to the activation of one

to all seven synapses (with a 1 ms interval between stimulation

of each synapse). We found that the EPSP peak increased with

the number of activated synapses, closely following a sigmoidal

function that greatly deviated from the linear summation of each

individual synapse (Figure 1B). We then tested different regions

between the tip and the branch point of single branches, and

analyzed how this function varied with location. Distal synapses

had a much steeper function than proximal synapses (fraction of

maximum per input for tip: 0.48 ± 0.09, middle: 0.24 ± 0.06,

base: 0.11 ± 0.01; n = 9, p = 0.004, ANOVA), which was also

shifted to the left (number of inputs at half of the maximum for

tip: 2.1 ± 0.4; middle: 3.4 ± 0.6; base: 6.1 ± 0.6, p = 0.006,

ANOVA; Figures 1C and Figure S1A, available online). The gain

of the input-output function increased more than 3-fold from

the branch point to the dendritic tip, and was shifted by approx-

imately five inputs (Figure 1D). Furthermore, the EPSP suprali-

nearity increased from 128% ± 6% to 209% ± 16% between

the base and the tip of the dendrite (p = 0.015, ANOVA; Figures

1E and S1B). These results were also observedwith small unitary

gluEPSPs (�0.25mV, see Figures S2A–S2D) and show that there

is a gradient of nonlinear synaptic integration along individual

dendritic branches, in which distal inputs are amplified more

strongly than proximal ones.

To understand the biophysical mechanism underlying supra-

linear integration, we used pharmacology to probe the role of
886 Neuron 69, 885–892, March 10, 2011 ª2011 Elsevier Inc.
specific dendritic active conductances (Johnston and Nar-

ayanan, 2008; Magee, 2000; Spruston, 2008). Blocking L-type

voltage-gated calcium channels (VGCCs) shifted the input-

output curve to the right (Figure 2A; number of inputs at half

maximum = 215% ± 39% of control; p = 0.032; supralinearity

at three inputs = 118% ± 10%; p = 0.0078; n = 6) without signif-

icantly affecting the gain (fraction of maximum per input: 115% ±

13%of control; p = 0.33; Figures 2A and 2C). A similar effect was

produced by blocking voltage-gated sodium channels (number

of inputs at half maximum = 159% ± 15% of control; p =

0.030; supralinearity at three inputs = 127% ± 15%; p = 0.024;

n = 4; Figure 2C), as well as by simultaneous VGCC and

voltage-gated sodium channel (VGSC) block (Figure S3). In

contrast, block of NMDA receptors (NMDARs) produced a linear

dendritic input-output function that was consistent with linear

summation of each synapse (average slope = 0.94 ± 0.1; not

significantly different from 1, p = 0.54; peak EPSP at seven

synapses = 97% ± 10% of linear sum; n = 5; Figures 2B and

2C). This shows that supralinear integration in layer 2/3 pyra-

midal cell dendrites crucially depends on NMDAR recruitment,

which is facilitated by activation of both VGCCs and VGSCs.

We next investigated how unitary EPSPs varied with distance

from the branch point. Analysis of somatic EPSPs evoked by

single spine uncaging revealed no significant correlation

between somatic peak amplitude and distance along the

dendritic branch (r = 0.13; p = 0.12; n = 139 synapses from 18

dendrites; peak of distal EPSPs = 97% ± 3% of proximal EPSPs,

not significantly different; p = 0.73; laser power, plane of focus,

and spine size kept constant; Figures 2D, 2E, and S1C).

However, block of NMDARs revealed a larger NMDA component

for EPSPs arising at more distal synapses (22% ± 4% for distal,

5% ± 7% for proximal; p = 0.041; n = 8), and lead to smaller
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Figure 2. Biophysical Mechanism of

Dendritic Supralinear Integration

(A) Somatic voltage response to increasing

number of synapses on a basal dendrite before

(black) and after blocking L-type calcium channels

with Nifedipine (green). Circles are data points,

thick lines are fits to the data, and dotted line is

the linear sum. (B) Similar to (A) but comparing

somatic responses before (black) and after (red)

blocking NMDARs with D-AP5. Note that

responses become linear. (C) Summary plot

(pooled data from multiple cells, n = 9 for control)

showing that both Nifedipine (n = 6) and TTX (n =

4) shift the dendritic input-output curve to the right,

while D-AP5 (n = 5) linearizes it. (D) Activation of

either a distal (orange circle) or a proximal (blue

circle) single spine produces a similarly sized

EPSP at the soma (right, black traces). Block of

NMDARs reveals a larger NMDA component in

the distal EPSP (right, red traces). (E) Summary

data comparing EPSP size and NMDA content

between proximal and distal spines (n = 8).
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somatic EPSPs for inputs at distal locations (82% ± 2% of prox-

imal; p = 0.032), suggesting that NMDAR recruitment can

partially compensate for dendritic filtering in these dendrites.

Temporal Summation Varies with Input Location
along Single Dendrites
Inputs to cortical neurons can exhibit different degrees of

temporal synchrony (Abeles, 1991; König et al., 1996; Shadlen

and Newsome, 1995), and the efficacy of each particular input

pattern depends on how well the individual inputs summate

over time (Magee, 2000; Rall, 1964). We therefore investigated

how temporal summation varies along basal and apical oblique

branches. We stimulated groups of seven synapses at different

dendritic locations using different interstimulus intervals and

monitored the somatic EPSP peak. While for proximal synapses

the EPSP peak decreased as input becamemore asynchronous,

distal synapses produced EPSPs that had remarkably similar

sizes over a range of stimulation intervals (Figure 3A). Distal

EPSPs at 10 ms intervals were 95% ± 1% of the peak at 1 ms

intervals, while for proximal EPSPs the peak decreased to

56% ± 4% (p < 0.0001, ANOVA, n = 19; Figure 3B), which was

also seen for small EPSPs (Figures S2E and S2F) and for

a smaller number of stimulated synapses (Figure S1D). Between

the branch point and the tip of the dendrite, temporal summation

gradually increased by almost 2-fold (Figure 3C). This shows that

in parallel with the changes in gain described above, single

dendritic branches also have a gradient of efficacy for summa-

tion of asynchronous synaptic input.

Layer 2/3 pyramidal cells lack a significant density of Ih chan-

nels (Larkum et al., 2007). In hippocampal CA1 pyramidal cells,

the presence of a dendritic Ih gradient has been shown to

normalize temporal summation over the dendritic tree (Magee,

2000). To test whether dendritic integration gradients are still

present in cortical neurons with significant Ih, we carried out

experiments in single dendrites of L5 pyramidal cells, which—
unlike L2/3 pyramidal dendrites—have a high density of Ih chan-

nels (Berger et al., 2001; Stuart and Spruston, 1998). We found

that the dendritic input-output function in L5 pyramidal cells

was supralinear and sigmoidal with a similar increase in steep-

ness from proximal to distal locations compared with layer 2/3

pyramidal cells (Figures 4A and 4B). As in layer 2/3 pyramidal

cells, temporal summation in layer 5 pyramidal cells was much

more effective at distal locations (peak EPSP at 8 ms intervals

was 97% ± 2% of the peak at 1 ms intervals for distal synapses,

while for proximal locations thepeakdecreased to 73%±8%;p=

0.019, ANOVA; n = 6; Figures 4C and 4D). Blocking Ih channels

caused a hyperpolarization of the somatic membrane potential

by 9.1 ± 0.2 mV (cf. Berger et al., 2001; Stuart and Spruston,

1998), accompanied by a dramatic reduction in the degree of

supralinearity (35% ± 3% of control; p < 0.0001; n = 5; Figures

4E and 4G) and efficacy of temporal summation (59% ± 13% of

control for distal dendrites; p = 0.036; n = 5; Figures 4F and 4G).

However, somatic depolarization via current injection restored

the supralinearity (104% ± 19% of control; p = 0.85) as well as

temporal summation (100% ± 6% of control; p = 0.95). This

suggests that in layer 5 pyramidal cells, the interaction between

dendritic nonlinearities and the depolarizing effect of Ih can over-

come the Ih-dependent speeding of the EPSP decay. Thus, as in

layer 2/3 pyramidal cells, layer 5 pyramidal cell dendrites exhibit

increased gain and temporal summation at distal sites.

Biophysical Model of Integration Gradients
To further explore the biophysical basis of integration gradients

in cortical pyramidal cell dendrites, we constructed a compart-

mental model of a layer 2/3 pyramidal cell (Figure 5A). Passive

properties were adjusted to match our recordings, and active

conductances were distributed in all compartments according

to previous studies (Major et al., 2008; Nevian et al., 2007; see

Experimental Procedures). Synapses containing both AMPARs

and NMDARs were placed at different locations along an
Neuron 69, 885–892, March 10, 2011 ª2011 Elsevier Inc. 887
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Figure 3. Temporal Summation Gradient along

Pyramidal Cell Dendrites

(A) Seven uncaging spots were placed either at the tip

(orange circles) or close to the branch point of a single

dendrite (blue circles), and activated with different degrees

of synchrony. Traces show somatic EPSPs in response to

increasing stimulation intervals for both locations. Note the

invariance of the EPSP peak for distal synapses. (B) EPSP

peak normalized to the response for 1 ms intervals for

three different regions of single dendrites. Lines are fits

to the data. (C) Temporal summation increases toward

the dendritic tip (measured as the EPSP peak at 10 ms

interval normalized to the response at 1 ms interval).

Smooth line is a sigmoid fit.
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individual dendrite. As in our experiments, we increased the

number of activated synapses or the intersynapse stimulation

interval while recording the somatic EPSP (Figures 5B and 5C).

The simulation results closely matched the experimental data,

showing sigmoidal input-output curves of increasing gain toward

the dendritic tip, as well as increased temporal summation

(Figures 5D and 5E; see also Figures S4A–S4C).

Analysis of the simulations revealed that the synaptic integra-

tion gradients can be explained by the interaction between

active conductances and the progressive increase in dendritic

input impedance toward the tip of the branch. Distal synapses

generate a larger local dendritic depolarization due to the high

local input impedance (Jack et al., 1975; Nevian et al., 2007),

which activates VGCCs and VGSCs, and relieves the magne-

sium block of NMDARs (Branco et al., 2010; Major et al.,

2008; Mayer et al., 1984; Nowak et al., 1984; Schiller et al.,

1997, 2000). This generates a supralinear and highly regenera-

tive response that is very sensitive to the addition of even a small

number of synapses, thus producing a steep input-output func-

tion. Because of the slow glutamate unbinding time constant of

NMDARs (on the order of �30 ms; Cais et al., 2008), asynchro-

nous inputs can effectively interact over a wide time window to

increase the local membrane depolarization and recruit more

NMDAR conductance, thereby producing a broad window for

synaptic integration at distal dendrites. When synapses are

placed more proximally, the lower local input impedance leads

to reduced recruitment and regeneration of active conduc-

tances, leading to a smaller gain function and less efficient

temporal summation. This was reproduced with a range of

NMDA:AMPA ratios (Figure S1E), as well as with forward and
888 Neuron 69, 885–892, March 10, 2011 ª2011 Elsevier Inc.
reverse AMPAR density gradients (Katz et al.,

2009; Figure S4F), underscoring the strength

of the interaction between impedance differ-

ences and dendritic active conductances. This

interaction is also sufficient to explain the

increased NMDA component of single

synapses at distal locations (which was present

with uniform synaptic NMDA conductance

density in the model), and also its compensa-

tory effect on the somatic EPSP amplitude

(Figure S4D), though distance-dependent

differences in the density of NMDARs or other
conductances cannot be ruled out as an additional contributing

factor.

Finally, we used the model to explore the consequences of the

integration gradients we have described on the spike output of

a pyramidal neuron receiving a large number of random excit-

atory and inhibitory inputs. Synapses were randomly distributed

across basal and apical oblique dendritic branches, and allowed

to cover only the distal or the proximal 10% of each branch (Fig-

ure 5F). Each synapse was activated with an independent Pois-

son train of presynaptic spikes, and the firing rate of the neuron

was measured for a range of input frequencies. The suprathres-

hold input-output function of distal synapses was clearly steeper

when compared with proximal synapses (slope of linear fit

between 3.5 and 5 Hz excitation rate: distal = 7.2, proximal =

2.6), with 3.3-fold more spikes produced at an excitation rate

of 5 Hz. Thus, with temporally distributed input onto basal

dendrites, distal synapses are surprisingly more efficient in

driving spike output in cortical pyramidal cells.

DISCUSSION

It is now well established that different dendritic regions can

exhibit different functional properties (Larkum et al., 1999; Llinás

and Sugimori, 1980; Schiller et al., 1997; Yuste et al., 1994).

Here we show that this functional heterogeneity also exists on

amuch finer spatial scale: the level of the single dendritic branch.

Moreover, we show that this heterogeneity obeys a simple orga-

nizational principle: a gradient of synaptic integration along the

proximal-distal axis.Distal synaptic inputsexhibit an input-output

function with higher gain and a broader window for temporal
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Figure 4. Dendritic Integration Gradients

in Layer 5 Pyramidal Neurons

(A) Left: two-photon image of a layer 5 pyramidal

cell with the dendrite targeted in experiment indi-

cated by rectangular box. Right: targeted dendrite

with distal (orange circles) and proximal (blue

circles) uncaging spots. (B) Somatic EPSPs in

response to increasing numbers of stimulated

spines (1 ms interval) for the proximal (top, blue)

and distal (bottom, orange) locations. The graph

on the right shows that, like in layer 2/3 cells, distal

synapses have a highly supralinear and sigmoidal

input-output function, while proximal locations

show a much more linear function. (C) Somatic

voltage traces for stimulation at increasing

intervals at proximal (blue traces) and distal

(orange traces) locations. (D) Summary data

showing that temporal summation is more effec-

tive at distal locations. (E) Blocking Ih channels

decreases the EPSP amplitude (red trace), which

is restored upon somatic depolarization (black

trace). Note the difference in the EPSP decay

between the black and orange (control) traces,

illustrating the Ih-dependent speeding of EPSP

decay. (F) Somatic EPSP for two stimulation

intervals of distal synapses in Ih block. Note how

the response at 4 ms is significantly smaller than

at 1 ms (compare with orange traces in C).

(G) Summary data showing the effects of Ih block

on dendritic supralinearity and efficiency of

temporal summation.
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summation than proximal inputs to the same dendrite. These

properties can allow asynchronously activated distal synapses

to overcome their relative electrotonic disadvantage compared

with proximal synapses and exert a paradoxically greater influ-

ence on action potential output. Furthermore, the differential

sensitivity to input timing makes proximal inputs more suited for

temporal coding, and distal inputs, for rate coding. The fact that

these differences exist along individual dendrites indicates that

single dendrites are not uniform compartments, and that the

computational strategy of individual synaptic inputs may depend

on their precise location along the dendrite.

Mechanisms Generating Synaptic Integration Gradients
along Single Dendrites
Using a combination of experimental and modeling approaches,

we demonstrate that the synaptic integration gradients result

from a combination of two basic biophysical features of single

dendrites. First, dendritic nonlinearities, including NMDAR

conductances, VGCCs, and VGSCs, must be recruited by

increasing numbers of synaptic inputs. Previous studies have

demonstrated that synchronous clustered input can recruit

such dendritic nonlinearities in neocortical pyramidal cells (Major

et al., 2008; Nevian et al., 2007; Polsky et al., 2004; Schiller et al.,

2000), which can help to enhance synaptic gain (Larkum et al.,
Neuron 69, 885–89
2004) and compensate for the electro-

tonic filtering of distal inputs (Cook and

Johnston, 1997, 1999). The second,

crucial, ingredient is the gradient of input
impedance that exists along single dendrites, a consequence

of the impedance load as the dendritic branch meets its parent

trunk (or the soma) and the end effect at the tip of the dendrite

(Jack et al., 1975; Rinzel and Rall, 1974). These two factors

work in concert to generate the observed gradient in integrative

properties along each dendrite. Given that these two proper-

ties—dendritic nonlinearities and impedance gradients—are

found in most neurons, this suggests that the observed synaptic

integration gradients may be a general feature of neurons in the

central nervous system.

It is important to note that the synaptic integration gradients

we have observed do not require any underlying gradients in

the properties of the synapses or in the dendritic distribution of

voltage-gated channels. Indeed, in our model we could repro-

duce our experimentally observed integration gradients using

entirely uniform synaptic parameters and densities of voltage-

gated channels; thus, the gradients arise solely from the nonuni-

form electronic architecture intrinsic to the fundamental

asymmetry of dendritic structure. In neurons exhibiting dendritic

gradients of synaptic properties (Katz et al., 2009; Magee and

Cook, 2000) or voltage-gated channels (Lörincz et al., 2002; Ma-

gee, 1999; Mathews et al., 2010; Williams and Stuart, 2000),

these will be superimposed on, and may modify, the synaptic

integration gradients that we have demonstrated.
2, March 10, 2011 ª2011 Elsevier Inc. 889
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Figure 5. Modeling the Impact of Dendritic

Integration Gradients on Neuronal Output

(A) Morphology of a reconstructed layer 2/3 pyramidal cell

used for simulations. Box indicates dendrite used in (B)–

(E). (B and C) Clusters of synapses were placed at different

locations along the dendrite (total length = 90 mm). (B)

Increasing numbers of synapses were activated. (C) All

synapses activated at different intervals. Traces show

somatic voltage responses for proximal (bottom) and

distal (top) synapses, which reproduce the experimental

data (see Figures 1A and 2A). (D and E) Summary for all

tested locations in the model, showing the same gradients

for the gain of the input-output function (D) and temporal

summation (E) that were observed experimentally. (F)

Schematic illustration of 169 synapses randomly distrib-

uted across all basal dendrites, with either a distal or

a proximal bias. (G) Each synapsewas activatedwith inde-

pendent Poisson trains of increasing frequency and the

somatic voltage was monitored. As the excitation

frequency increases, the spiking frequency increases

more rapidly for distally distributed synapses. Traces

show responses for distal (orange) and proximal (blue)

distributions stimulated at 4 Hz.
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Functional Implications
Howmight neurons exploit these synaptic integration gradients?

First, they may provide a mechanism to mitigate the unfavorable

electrotonic location of distal inputs. When synapses are active

individually, or during synchronous activation of multiple

synapses, distally evoked events are smaller at the soma than

proximally evoked events due to dendritic filtering (Major et al.,

2008; Nevian et al., 2007; Rall, 1964; Rinzel and Rall, 1974),

a phenomenon also reproduced by our model (Figure S1A).

However, in the less constrained condition of asynchronously
890 Neuron 69, 885–892, March 10, 2011 ª2011 Elsevier Inc.
active inputs, the increased time window for

integration of distal inputs overcomes the disad-

vantage of filtering, making them more efficient

than proximal inputs in triggering axonal output.

As demonstrated in Figure 5, such a scenario is

likely to be engaged in vivo, where continuous

asynchronous barrages of synaptic inputs at

high rates are expected (Destexhe et al., 2003;

Sanchez-Vives and McCormick, 2000), particu-

larly given that conditions of precisely synchro-

nous activation of inputs may be achieved only

rarely, or with some difficulty in vivo (London

et al., 2010).

Second, the differential sensitivity to temporal

information at proximal and distal locations may

be used to read out different forms of informa-

tion from input provided by the circuit. For

example, connections placed proximally will

sum almost linearly and require high temporal

coincidence to effectively drive action potential

firing, meaning that temporally coded informa-

tion can be precisely read out (Softky and

Koch, 1993). In contrast, inputs that are placed

distally will be nonlinearity amplified with high

gain and integrated over a wide temporal
window, enabling the effective readout of rate-based information

(Shadlen and Newsome, 1998). Such differential readout may be

particularly relevant for circuits exhibiting different functional

roles for inputs to the proximal and distal regions, such as in

granule cells of dentate gyrus which receive layered input from

the lateral and medial entorhinal cortex along their largely

unbranched dendrites (Andersen et al., 2006; Hjorth-Simonsen,

1972). Thus, the dendritic gradients we have described allow

a single cell to differentially integrate and process inputs from

different origins and with different temporal structure. This may
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help to reconcile the rate-based and timing-based views of

neural coding, and the increased flexibility provided by single

dendrites may also greatly increase the computational power

of individual neurons.

EXPERIMENTAL PROCEDURES

Slice Preparation and Electrophysiology

Acute sagittal brain slices were prepared from 3- to 6-week-old rats. Experi-

ments were carried out at 32�C–35�C and somatic whole-cell recordings

were obtained with a Multiclamp 700B amplifier (Molecular Devices). Patch

pipettes were filled with a KMeSO4-based internal solution, with Alexa Fluor

594 (100 mM; Invitrogen) to visualize cell morphology. For the pharmacology

experiments in Figure 2, drugs were included in a second caged glutamate-

puffing pipette (D-AP5, 500 mM; Nifedipine, 40 mM; TTX, 1 mM).

Two-Photon Imaging and Uncaging

Simultaneous two-photon imaging and uncaging was performed using a dual

galvanometer-based scanning system (Prairie Technologies, Middleton, WI)

using two Ti:sapphire pulsed lasers (MaiTai, Spectra-Physics). Two-photon

glutamate uncaging was carried out based on previously published methods

(Gasparini and Magee, 2006; Losonczy and Magee, 2006; Matsuzaki et al.,

2001). MNI-caged-L-glutamate (12 mM, Tocris Cookson, UK) was puffed

locally and uncaging exposure time was 100–500 ms with laser power adjusted

to produce gluEPSPs with kinetics and amplitudes comparable to mEPSPs

recorded in the same cells.

Compartmental Modeling

Simulations were performed with the NEURON simulation environment (Hines

and Carnevale, 1997) using a detailed 3D reconstruction (Neurolucida; Micro-

brightfield, Williston, VT) of a biocytin-filled layer 2/3 pyramidal neuron from

one the experiments. Biophysical and synaptic parameters were modeled as

in Branco et al. (2010). For the simulations in Figures 5F and 5G, excitatory

synapses were distributed over 18 dendritic branches and placed either in

the proximal or distal 10% of the branch, and activated with independent

Poisson trains of increasing frequencies. The same number of inhibitory

synapses were placed in the same compartment of each excitatory synapse,

and activated with Poisson trains at a mean frequency of 10 Hz.

Analysis

EPSP supralinearity was defined as the recorded EPSP peak over the linear

sum of the individual components. Gain and offset were calculated from the

derivative of the sigmoidal fit to the data points. The gain reported is the

peak of the derivative and thus the maximal gain of the input-output function.

Data are reported as mean ± SEM unless otherwise indicated.

SUPPLEMENTAL INFORMATION

Supplemental Information includes four figures and Supplemental Experi-

mental Procedures and can be found with this article online at doi:10.1016/j.

neuron.2011.02.006.
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